《利用频率估计概率》概率初步PPT课件2 简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板是由文稿PPT提供的商务岗位竞聘通用PPT模板,简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板,下载源文件即可自行编辑修改源文件里的文字和图片,如果想要更多精美商务PPT模板,可以来道格办公。道格办公PPT,海量PPT模板幻灯片素材下载,我们只做精品的PPT模板!
Tips:如果打开模版觉得不合适您全部需求的话,可以检索相关内容「《利用频率估计概率》概率初步PPT课件2 」即可。
Windows系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
Mac系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
相关阅读
更详细的PPT相关的教程、字体的教程可以查看: 点击查看
注意事项
不要在微信、知乎、QQ、内置浏览器下载、请用手机浏览器下载! 如果您是手机用户,请移步电脑端下载!
1、文稿PPT,仅供学习参考,请在下载后24小时删除。
2、如果资源涉及你的合法权益,第一时间删除。
3、联系方式:service@daogebangong.com
《利用频率估计概率》概率初步PPT课件2 由于使用限制,仅供个人学习与参考使用,如需商业使用请到相关官网授权。
(个人非商业用途是指以个人为单位、非商业产品运作的方式,运用该字体完成个人作品的展示,包括但不限于个人论文、简历等作品的设计)
相关阅读
更详细的PPT相关的教程、字体的教程可以查看:请点击查看
权威 PPT简介
《利用频率估计概率》概率初步PPT课件2
温故知新
一 . 利用频率估计概率
当试验的可能结果有很多并且各种结果发生的可能性相等时,我们可以用的方式得出概率,当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,我们一般还要通过统计频率来估计概率.
在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐 渐稳定到的常数P附近,可以估计这个事件发生的概率.
为简单起见,我们能否直接把表中500千克柑橘对应的柑橘损坏的频率看作柑橘损坏的频率看作柑橘损坏的概率?
根据频率稳定性定理,在要求精度不是很高的情况下,不妨用表中的最后一行数据中的频率近似地代替概率.
... ... ...
你指定两个整数计算机在这两个整数之间能随机整数吗?
用计算器也能产生你指定的两个整数之间(包括这两整数)的随机整数.例如,要产生1到9之间的随机整数,要先使计算器进入产生随机数的模式;再输入需要产生随机数的范围(1到9);反复按动有关键,计算器就可以不道产生所需随机数.
计算器产生的随机数是用数学方法得到的一串数,他们具有类似随机数的性质,实际上,骰子就是一种最早的能够产生1到6这6个随机数的机器
在由频率估计概率的模拟试验中,计算机具有更大的优越性.产生随机数后,要得出相应频率应需要大量的计算,而计算机可以按设定的程序自行的产生随机数并进行统计计算.
假设用小球模拟问题的实验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:
(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响实验结果吗?
有影响,如果不放回,就不是3双黑袜子和1双白袜子的实验,而是中途变成了3双黑袜子实验,这两种实验结果是不一样的。
(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行实验,结果会怎样?
... ... ...
课堂小结
弄清了一种关系------频率与概率的关系
当试验次数很多或试验时样本容量足够大时,一件事件发生的频率与相应的概率会非常接近.此时,我们可以用一件事件发生的频率来估计这一事件发生的概率.
了解了一种方法-------用多次试验频率去估计概率
体会了一种思想:用样本去估计总体 用频率去估计概率
关键词:概率初步课件,利用频率估计概率课件,新人教版九年级上册数学PPT课件,九年级数学幻灯片课件下载,概率初步PPT课件下载,利用频率估计概率PPT课件下载,.ppt格式
更多关于《 概率初步利用频率估计概率 》PPT课件, 请点击 概率初步ppt利用频率估计概率ppt标签。
《利用频率估计概率》概率初步PPT课件5:
《利用频率估计概率》概率初步PPT课件5 回顾 1.概率的定义,事件的分类 2、等可能事件概率公式:P(A)=m/n 3、求等可能事件概率的条件: (1)所有可能结果是有限个; (2)每种结果的可能..
《利用频率估计概率》概率初步PPT课件4:
《利用频率估计概率》概率初步PPT课件4 新课导入 同一条件下在大量重复试验中如果某随机事件A发生的频率稳定在某个常数p附近那么这个常数就叫做事件A的概率. 问题(两题中任选一题): ..
《利用频率估计概率》概率初步PPT课件3:
《利用频率估计概率》概率初步PPT课件3 复习回顾 普查 为了一定的目的而对考察对象进行全面的调查称为普查; 总体 所要考察对象的全体称为总体 个体 组成总体的每一个考察对象称为个体..