行业类别 | 格式 | 大小 |
---|---|---|
青岛版九年级数学上册 | pptx | 6 MB |
描述
《一元二次方程根的判别式》PPT课件2
知识回顾
1.一元二次方程的求根公式是什么?
一般地,对于一元二次方程ax²+bx+c=0(a≠0),当b²-4ac≥0时,它的根是
x=-b±√b²-4ac/2a
2.用公式法解一元二次方程的一般步骤是什么?
用公式法解一元二次方程首先要把它化为一般形式,
进而确定a、b、c的值,再求出b2-4ac的值,
当b²-4ac≥0的前提下,再代入公式求解;
当b²-4ac<0时,方程无实数解(根)
... ... ...
概括总结
由此可以发现一元二次方程ax²+bx+c=0(a≠0)的根的情况可由b²-4ac来判定
当b²-4ac>0时,方程有两个不相等的实数根
当b²-4ac=0时,方程有两个相等的实数根
当b²-4ac<0时,方程没有实数根
我们把b²-4ac叫做一元二次方程ax²+bx+c=0(a≠0)的根的判别式。
若已知一个一元二次方程的根的情况,是否能得到判别式的值的符号呢?
当一元二次方程有两个不相等的实数根时,b²-4ac>0
当一元二次方程有两个相等的实数根时,b²-4ac = 0
当一元二次方程没有实数根时,b²-4ac<0
... ... ...
概念巩固
1.方程3x²+2=4x的判别式b2-4ac=-8,
所以方程的根的情况是方程无实数根.
2.下列方程中,没有实数根的方程是( )
A.x²=9 B.4x²=3(4x-1)
C.x(x+1)=1 D.2y²+6y+7=0
3.方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是( )
A.b²-4ac>0 B.b²-4ac<0
C.b²-4ac≤0 D.b²-4ac≥0
... ... ...
典型例题
例1不解方程,判断下列方程根的情况:
(1)-x²+2√6x-6=0
(2)x²+4x=2
(3)4x²+1=-3x
(4)x²-2mx+4(m-1)=0
解(1)∵b²-4ac=24-4×(-1)×(-6)=0
∴该方程有两个相等的实数根
(2) 移项,得x²+4x-2=0
∵b²-4ac=16-4×1×(-2)=16-(-8)
=16+8=24>0
∴该方程有两个不相等的实数根
... ... ...
练一练
1.不解方程,判断方程根的情况:
(1)x²+3x-1=0;
(2)x²-6x+9=0;
(3)2y²-3y+4=0
(4)x²+5=2√5x
2.k取什么值时,方程x²-kx+4=0有两个相等的实数根?求这时方程的根。
3.已知a、b、c分别是三角形的三边,则关于x的一元二次方程(a+b)x²+2cx+(a+b)=0的根的情况是( )
A、没有实数根
B、可能有且仅有一个实数根
C、有两个相等的实数根
D、有两个不相等的实数根。
... ... ...
归纳总结
一元二次方程的根的情况与系数的关系?
b²-4ac叫做一元二次方程根的判别式。利用根的判别式可以在不解方程的情况下判断一元二次方程的根的情况;反过来由方程的根的情况也可以得知b²-4ac的符号,进而得出方程中未知字母的取值情况。
关键词:一元二次方程根的判别式教学课件,青岛版九年级上册数学PPT课件下载,九年级数学幻灯片课件下载,一元二次方程根的判别式PPT课件下载,.PPT格式;
更多关于《 一元二次方程根的判别式 》PPT课件, 请点击 一元二次方程根的判别式ppt标签。
《一元二次方程根的判别式》PPT课件:
《一元二次方程根的判别式》PPT课件 A.由解方程引入: 解方程: ①x+x-1=0 b-4ac=1+4=5 ②x-4x+4=0 b-4ac=16-16=0 ③2x+3x+4=0 b-4ac=9-32<0 此方程无实数根 可见由b-4ac的值可以判断..
文件信息
更新时间: 2024-11-20
所属频道:青岛版九年级数学上册
素材版本:PowerPoint2003及以上版本(.ppt)
文件大小:174 KB
显示比例:普屏4:3
附件类型:.rar
本模板属于 数学课件 青岛版九年级数学上册 行业PPT模板
《一元二次方程根的判别式》PPT课件2 简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板是由文稿PPT提供的商务岗位竞聘通用PPT模板,简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板,下载源文件即可自行编辑修改源文件里的文字和图片,如果想要更多精美商务PPT模板,可以来道格办公。道格办公PPT,海量PPT模板幻灯片素材下载,我们只做精品的PPT模板!
Tips:如果打开模版觉得不合适您全部需求的话,可以检索相关内容「《一元二次方程根的判别式》PPT课件2 」即可。
Windows系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
Mac系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
相关阅读
更详细的PPT相关的教程、字体的教程可以查看: 点击查看
注意事项
不要在微信、知乎、QQ、内置浏览器下载、请用手机浏览器下载! 如果您是手机用户,请移步电脑端下载!
1、文稿PPT,仅供学习参考,请在下载后24小时删除。
2、如果资源涉及你的合法权益,第一时间删除。
3、联系方式:service@daogebangong.com
《一元二次方程根的判别式》PPT课件2 由于使用限制,仅供个人学习与参考使用,如需商业使用请到相关官网授权。
(个人非商业用途是指以个人为单位、非商业产品运作的方式,运用该字体完成个人作品的展示,包括但不限于个人论文、简历等作品的设计)