《二次函數與一元二次方程式》二次函數PPT課件3簡約校園招聘活動策劃方案總結企事業單位招聘宣傳演講會PPT模板是由文稿PPT提供的商務崗位競聘通用PPT模板,簡約校園招聘活動策劃方案總結企事業單位招聘宣傳演講會PPT模板,下載源文件即可自行編輯修改源文件裡的文字和圖片,如果想要更多精美商務PPT模板,可以來道格資源。 道格資源PPT,海量PPT模板幻燈片素材下載,我們只做精品的PPT模板!
Tips:如果打開模版覺得不合適您全部需求的話,可以檢索相關內容「《二次函數與一元二次方程式》二次函數PPT課件3」即可。
Windows系統模版使用方法
直接解壓文件後使用office 或者wps即可使用
Mac系統模版使用方法
直接解壓文件後使用office 或者wps即可使用
相關閱讀
更詳細的PPT相關的教程、字體的教程可以查看: 點擊查看
注意事項
不要在微信、知乎、QQ、內置瀏覽器下載、請用手機瀏覽器下載!如果您是手機用戶,請移步電腦端下載!
1、文稿PPT,僅供學習參考,請在下載後24小時刪除。
2、如果資源涉及你的合法權益,第一時間刪除。
3、聯繫方式:service@daogebangong.com
《二次函數與一元二次方程式》二次函數PPT課件3由于使用限制,仅供个人学习与参考使用,如需商业使用请到相关官网授权。
(個人非商業用途是指以個人為單位、非商業產品運作的方式,運用該字體完成個人作品的展示,包括但不限於個人論文、簡歷等作品的設計)
相關閱讀
更詳細的PPT相關的教程、字體的教程可以查看:請點擊查看
權威 PPT简介
《二次函數與一元二次方程式》二次函數PPT課件3
教學目標:
1.理解拋物線y=ax²+bx+c與x軸的交點與方程式ax²+bx+c=0的根的關係。
2.理解二次函數y=ax²+bx+c的圖象與x軸的位置關係與一元二次方程式ax²+bx+c=0的根的情況的對應關係。
3.掌握數形結合解決問題的方法。
閱讀課本
思考:1、求能否達到要求高度的依據是什麼?
2.為什麼球的高度為15公尺和0公尺時有兩個飛行時間?而達到20公尺時只有一個時間?
知識探究
問題1:如圖,以40 m /s的速度將小球沿與地面成30度角的方向擊出時,球的飛行路線是一條拋物線,如果不考慮空氣阻力,球的飛行高度y (單位:m)與飛行時間x(單位:s)之間具有關係: y= 20 x – 5 x²
考慮下列問題:
(1)球的飛行高度能否達到 15 m? 若能,需要多少時間?
(2)球的飛行高度能否達到 20 m? 若能,需要多少時間?
(3)球的飛行高度能否達到 20.5 m? 若能,需要多少時間?
(4)球從飛出到落地要花多少時間?
歸納:
y=ax²+bx+c與ax²+bx+c=0的關係:
1.解方程式ax²+bx+c=0可以看成是二次函數y=ax²+bx+c的值為0時,求自變數x的值。
求二次函數y=ax²+bx+c的值為0時自變數x的值。可以看成是解方程式ax²+bx+c=0
問題2: 下列二次函數的圖象與 x 軸有交點嗎? 若有,請求出交點座標.
(1) y = x²+x-2
(2) y = x² - 6x +9
(3) y = x² – x+ 1
隨堂訓練
1.一元二次方程式3x²+x-10=0的兩個根是x1=-2 ,x2=5/3, 那麼二次函數y=3x²+x-10與x軸的交點座標是(-2 ,0)和(5/3,0).
2.不與x軸相交的拋物線是( )
A y=2x²–3 B y=-2 x²+3
C y=-x²–3x D y=-2(x+1)²-3
3.二次函數的圖像如圖6所示,則下列關係式不正確的是( )
A.a<0 B.abc>0
C.a+b+c>0 D.b²-4ac>0
4.已知拋物線 y=x²–8x +c的頂點在x軸上,則c=_.
知識提升:
1.若拋物線 y=x²+bx+ c 的頂點在第一象限,則方程式 x²+bx+c =0 的根的情況是_____.
2.直線 y=2x+1 與拋物線 y= x²+4x+3 有____個交點.
3.已知拋物線y=x²+mx+m-2
求證: 無論 m取何值,拋物線總與x軸有兩個交點.
關鍵字:二次函數教學課件,二次函數與一元二次方程式教學課件,北師大版九年級下冊數學PPT課件,九年級數學幻燈片課件下載,二次函數PPT課件下載,二次函數與一元二次方程式PPT課件下載,.ppt格式
更多關於《 二次函數二次函數與一元二次方程式 》PPT課件, 請點選 二次函數ppt二次函數與一元二次方程式ppt標籤。
《二次函數與一元二次方程式、不等式》一元二次函數、方程式與不等式PPT課件(第2課時):
《二次函數與一元二次方程式、不等式》一元二次函數、方程式與不等式PPT課件(第2課時) 第一部分內容:學習目標1.掌握一元二次不等式的實際應用(重點). 2.理解三個二次之間的關係. 3...
《二次函數與一元二次方程式、不等式》一元二次函數、方程式與不等式PPT課件(第1課時):
《二次函數與一元二次方程式、不等式》一元二次函數、方程式與不等式PPT課件(第1課時一元二次不等式及其解法) 第一部分內容:學習目標1.掌握一元二次不等式的解法(重點). 2.能根據三..
《二次函數與一元二次方程式、不等式》一元二次函數、方程式與不等式PPT課件:
《二次函數與一元二次方程式、不等式》一元二次函數、方程式與不等式PPT課件第一部分內容:學習目標掌握一元二次不等式的解法理解一元二次方程式、一元二次不等式與二次函數的關係會用..