行业类别 | 格式 | 大小 |
---|---|---|
人教高中数学A版必修一 | pptx | 6 MB |
描述
《章末整合》指数函数与对数函数PPT
第一部分内容:专题一 指数与对数的运算问题
例1计算下列各式的值:
(1)(2/3)^("-" 2)-(1-√2)0-(3 3/8)^(2/3);
(2)2log32-log332/9+log38-3^(log_3 5);
(3)64^("-" 1/3)-("-" (3√2)/2)^0+[(-2)-3"]" ^(4/3)+16-0.75.
解:(1)原式=(3/2)^2-1-(27/8)^(2/3)=9/4-1-[(3/2)^3 ]^(2/3)
=9/4-1-(3/2)^2=9/4-1-9/4=-1.
(2)原式=2log32-5log32+2+3log32-5
=2-5=-3.
(3)原式=(43")" ^("-" 1/3)-1+(-2-3")" ^(4/3)+(24")" ^("-" 3/4)
=4-1-1+2-4+2-3
=1/4-1+1/16+1/8
=-9/16.
例2(1)若2a=5b=10,求1/a+1/b的值;
(2)已知x+x-1=3,求x^(1/2)+x^("-" 1/2),x2+x-2的值.
分析:(1)利用指数式与对数式的互化和换底公式;
(2)利用指数的运算性质和整体代入.
解:(1)∵2a=5b=10,
∴a=log210,b=log510,
∴1/a+1/b=lg 2+lg 5=1.
(2)∵x+x-1=3,
∴ x^(1/2)+x^("-" 1/2) 2=x+x-1+2=5,
∴x^(1/2)+x^("-" 1/2)=√5,
(x+x-1)2=x2+x-2+2=9.
∴x2+x-2=7.
归纳总结指数与对数的运算是指数、对数应用的前提,也是研究指数函数与对数函数的基础,不仅是本章考查的重点,也是高考的重要考点之一.
进行指数式的运算时,要注意运算或化简的先后顺序,一般应将负指数转化为正指数、将根式转化为指数式后再计算或化简,同时注意幂的运算性质的应用;对数运算要注意对数运算性质的正用与逆用,注意对底数的转化、对数恒等式以及换底公式的灵活运用,还要注意对数运算与指数运算之间的关系及其合理地转化.
... ... ...
章末整合PPT,第二部分内容:专题二 指数函数、对数函数的图象和性质应用
例3函数y=ax-1/a(a>0,且a≠1)的图象可能是 ()
解析:函数y=ax-1/a由函数y=ax的图象向下平移1/a个单位长度得到,A项显然错误;当a>1时,0<1/a<1,平移距离小于1,所以B项错误;当01,平移距离大于1,所以C项错误.故选D.
答案:D
例4画出函数y=log4(x2-2x+1)的图象.
分析:先要找出这个函数所对应的基本初等函数,然后利用图象变换向目标靠拢.
解:先对函数解析式进行化简,可得y=log2|x-1|.可直接利用描点法画出y=log2x的图象,而后画出关于y轴的对称变换得到y=log2|x|,再将整个函数图象向右平移一个单位长度.过程如下:
... ... ...
章末整合PPT,第三部分内容:专题三 分类讨论思想在解题中的应用
例6比较logx(2x)与logx(3-2x)的大小.
解:要使函数logx(2x)与logx(3-2x)有意义,
则{■(2x>0"," @3"-" 2x>0"," @x>0"且" x≠1"," )┤
解得0 logx(2x)-logx(3-2x)=logx2x/(3"-" 2x),
而u=2x-(3-2x)=4x-3,
当0 ∴logx(2x)>logx(3-2x);
当x=3/4时,u=0,即2x=3-2x,
∴logx(2x)=logx(3-2x);
当3/4 ∴logx(2x) 当1 ∴logx(2x)>logx(3-2x).
归纳总结分类讨论思想即对问题中的参数不能一概而论,需要按一定的标准进行分别阐述,在分类讨论中要做到“不重复,不遗漏”.
... ... ...
章末整合PPT,第四部分内容:专题四 数形结合思想在解题中的应用
例7若方程mx-x-m=0(m>0,m≠1)有两个不同的实数解,则m的取值范围是()
A.(1,+∞)
B.(0,1)
C.(0,+∞)
D.(2,+∞)
解析:方程mx-x-m=0有两个不同的实数解,即函数y=mx与y=x+m的图象有两个不同的公共点.显然,当m>1时,两图象有两个不同的交点;当0 答案:A
归纳总结1.数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致分为两种情形:借助于形的生动性和直观性来阐明数之间的联系,或者是借助于数的准确性和严密性来阐明形的某种属性.
2.在解决数学问题时,如果把抽象的数学问题用图形加以刻画使其理解更直观,解答更快捷,但要注意形离开了数难入微,因此两者形影不离,相互补充.
... ... ...
章末整合PPT,第五部分内容:专题五 函数与方程的思想在解题中的应用
例8设函数f(x)=ax+2a+1(a≠0),在-1≤x≤1上f(x)存在一个零点,求实数a的取值范围.
分析:先转化为f(-1)f(1)≤0,再结合函数的图象解不等式.
解:因为函数f(x)在-1≤x≤1上存在一个零点,
所以f(-1)f(1)≤0,
即(-a+2a+1)(a+2a+1)≤0,
即(a+1)(3a+1)≤0.
令g(a)=(a+1)(3a+1)=0,得函数g(a)的两个零点是a1=-1,a2=-1/3.
作出g(a)的大致图象,如图所示.
由图象可知g(a)≤0时,可得a的取值范围是["-" 1",-" 1/3].
变式训练6已知f(x)=log2(4x+1)-kx,g(x)=f(x)-a.
(1)当f(x)是偶函数时,求实数k的值;
(2)设k=2,若函数g(x)存在零点,求实数a的取值范围.
分析:(1)根据题意,由偶函数的性质可得f(x)-f(-x)=0,即[log2(4x+1)-kx]-[log2(4-x+1)+kx]=0,变形分析可得答案;
(2)若k=2,则f(x)=log2(4x+1)-2x,由零点的定义分析可得方程f(x)=a有解,分析函数f(x)的值域可得答案.
... ... ...
关键词:高中人教A版数学必修一PPT课件免费下载,章末整合PPT下载,指数函数与对数函数PPT下载,.PPT格式;
更多关于《 指数函数与对数函数章末整合 》PPT课件, 请点击 指数函数与对数函数ppt章末整合ppt标签。
《章末整合提升》元素与物质世界PPT:
《章末整合提升》元素与物质世界PPT 第一部分内容:一、分类方法及其在生活中的应用 1.元素与物质分类 (1)元素以游离态和化合态存在于自然界中,非常活泼的元素只能以化合态存在。如..
《章末整合提升》认识化学科学PPT:
《章末整合提升》认识化学科学PPT 第一部分内容:一、化学用语 1.元素符号 (1)规定:用元素的拉丁名称的第一个大写字母或附加一个小写字母表示。 (2)意义:①宏观上表示一种元素;②..
《章末整合提升》物质结构元素周期律PPT:
《章末整合提升》物质结构元素周期律PPT 第一部分内容:一、元素的金属性与非金属性强弱的判断 1.金属性强弱的判断 (1)据元素周期表判断 ①同一周期,从左到右,元素的金属性逐渐减..
文件信息
更新时间: 2024-11-20
所属频道:人教高中数学A版必修一
素材版本:PowerPoint2003及以上版本(.ppt)
文件大小:1995 KB
显示比例:普屏4:3
附件类型:.rar
本模板属于 数学课件 人教高中数学A版必修一 行业PPT模板
《章末整合》指数函数与对数函数PPT 简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板是由文稿PPT提供的商务岗位竞聘通用PPT模板,简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板,下载源文件即可自行编辑修改源文件里的文字和图片,如果想要更多精美商务PPT模板,可以来道格办公。道格办公PPT,海量PPT模板幻灯片素材下载,我们只做精品的PPT模板!
Tips:如果打开模版觉得不合适您全部需求的话,可以检索相关内容「《章末整合》指数函数与对数函数PPT 」即可。
Windows系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
Mac系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
相关阅读
更详细的PPT相关的教程、字体的教程可以查看: 点击查看
注意事项
不要在微信、知乎、QQ、内置浏览器下载、请用手机浏览器下载! 如果您是手机用户,请移步电脑端下载!
1、文稿PPT,仅供学习参考,请在下载后24小时删除。
2、如果资源涉及你的合法权益,第一时间删除。
3、联系方式:service@daogebangong.com
《章末整合》指数函数与对数函数PPT 由于使用限制,仅供个人学习与参考使用,如需商业使用请到相关官网授权。
(个人非商业用途是指以个人为单位、非商业产品运作的方式,运用该字体完成个人作品的展示,包括但不限于个人论文、简历等作品的设计)