行业类别 | 格式 | 大小 |
---|---|---|
人教高中数学A版必修一 | pptx | 6 MB |
描述
《函数的概念及其表示》函数的概念与性质PPT课件(第一课时函数的概念)
第一部分内容:学 习 目 标
1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)
2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)
3.能够正确使用区间表示数集.(易混点)
核 心 素 养
1.通过学习函数的概念,培养数学抽象素养.
2.借助函数定义域的求解,培养数学运算素养.
3.借助f(x)与f(a)的关系,培养逻辑推理素养.
... ... ...
函数的概念及其表示PPT,第二部分内容:自主预习探新知
新知初探
1.函数的概念
定义
一般地,设A,B是非空的_________,如果对于集合A中的_________按照某种确定的对应关系f,在集合B中都有_________的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数
三要素
对应关系 y=f(x),x∈A
定义域 _________的取值范围
值域 与x的值相对应的y的函数值的集合_________
思考1:(1)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?
(2)f(x)与f(a)有何区别与联系?
提示:(1)这种看法不对.
符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.
(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.
2.区间及有关概念
(1)一般区间的表示
设a,b∈R,且a
(2)特殊区间的表示
思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?
(2)“∞”是数吗?如何正确使用“∞”?
提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.
(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.
初试身手
1.函数y=1x+1的定义域是()
A.[-1,+∞)
B.[-1,0)
C.(-1,+∞)
D.(-1,0)
2.若f(x)=11-x2,则f(3)=________.
3.用区间表示下列集合:
(1){x|10≤x≤100}用区间表示为________;
(2){x|x>1}用区间表示为________.
... ... ...
函数的概念及其表示PPT,第三部分内容:合作探究提素养
函数的概念
【例1】(1)下列各组函数是同一函数的是()
①f(x)=-2x3与g(x)=x-2x;
②f(x)=x与g(x)=x2;
③f(x)=x0与g(x)=1x0;
④f(x)=x2-2x-1与g(t)=t2-2t-1.
A.①②B.①③
C.③④ D.①④
(2)判断下列对应是不是从集合A到集合B的函数.
①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;
②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;
③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;
④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.
(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.
②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.
③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.
④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.
由上可知是同一函数的是③④.
故选C.]
(2)[解] ①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.
②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.
③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.
④集合A不是数集,故不是函数.]
规律方法
1.判断对应关系是否为函数的2个条件
(1)A,B必须是非空实数集.
(2)A中任意一元素在B中有且只有一个元素与之对应.
对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.
2.判断函数相等的方法
(1)先看定义域,若定义域不同,则不相等;
(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.
课堂小结
1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.
2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.
3.函数符号y=f(x)是学习的难点,它是抽象符号之一.首先明确符号“y=f(x)”为y是x的函数,它仅仅是函数符号,不是表示“y等于f与x的乘积”.
... ... ...
函数的概念及其表示PPT,第四部分内容:当堂达标固双基
1.思考辨析
(1)区间表示数集,数集一定能用区间表示.()
(2)数集{x|x≥2}可用区间表示为[2,+∞].()
(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()
(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()
(5)函数的定义域和值域一定是无限集合.()
2.下列函数中,与函数y=x相等的是()
A.y=(x)2
B.y=x2
C.y=|x|
D.y=3x3
3.将函数y=31-1-x的定义域用区间表示为________.
4.已知函数f(x)=x+1x,
(1)求f(x)的定义域;
(2)求f(-1),f(2)的值;
(3)当a≠-1时,求f(a+1)的值.
... ... ...
关键词:高中人教A版数学必修一PPT课件免费下载,函数的概念及其表示PPT下载,函数的概念与性质PPT下载,函数的概念PPT下载,.PPT格式;
更多关于《 函数的概念与性质函数的概念函数的概念及其表示 》PPT课件, 请点击 函数的概念与性质ppt函数的概念ppt函数的概念及其表示ppt标签。
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用):
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问..
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用):
《函数的奇偶性》函数的概念与性质PPT(第2课时奇偶性的应用) 第一部分内容:学 习 目 标 1.会根据函数奇偶性求函数值或解析式. 2.能利用函数的奇偶性与单调性分析、解决较简单的问..
《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念):
《函数的奇偶性》函数的概念与性质PPT(第1课时奇偶性的概念) 第一部分内容:学 习 目 标 1.理解奇函数、偶函数的定义. 2.了解奇函数、偶函数图像的特征. 3.掌握判断函数奇偶性的..
文件信息
更新时间: 2024-11-22
所属频道:人教高中数学A版必修一
素材版本:PowerPoint2003及以上版本(.ppt)
文件大小:1750 KB
显示比例:普屏4:3
附件类型:.rar
本模板属于 数学课件 人教高中数学A版必修一 行业PPT模板
《函数的概念及其表示》函数的概念与性质PPT课件(第一课时函数的概念) 简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板是由文稿PPT提供的商务岗位竞聘通用PPT模板,简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板,下载源文件即可自行编辑修改源文件里的文字和图片,如果想要更多精美商务PPT模板,可以来道格办公。道格办公PPT,海量PPT模板幻灯片素材下载,我们只做精品的PPT模板!
Tips:如果打开模版觉得不合适您全部需求的话,可以检索相关内容「《函数的概念及其表示》函数的概念与性质PPT课件(第一课时函数的概念) 」即可。
Windows系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
Mac系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
相关阅读
更详细的PPT相关的教程、字体的教程可以查看: 点击查看
注意事项
不要在微信、知乎、QQ、内置浏览器下载、请用手机浏览器下载! 如果您是手机用户,请移步电脑端下载!
1、文稿PPT,仅供学习参考,请在下载后24小时删除。
2、如果资源涉及你的合法权益,第一时间删除。
3、联系方式:service@daogebangong.com
《函数的概念及其表示》函数的概念与性质PPT课件(第一课时函数的概念) 由于使用限制,仅供个人学习与参考使用,如需商业使用请到相关官网授权。
(个人非商业用途是指以个人为单位、非商业产品运作的方式,运用该字体完成个人作品的展示,包括但不限于个人论文、简历等作品的设计)