行业类别 | 格式 | 大小 |
---|---|---|
冀教版七年级数学下册 | pptx | 6 MB |
描述
Cours PPT « Application des équations linéaires à deux variables »
Première partie : Problèmes d'itinéraire
relation quantitative de base
distance = temps x vitesse
temps=distance/vitesse
vitesse=distance/temps
En voyageant dans la même direction au même moment, distance = somme du temps x vitesse
En voyageant dans la même direction au même moment, distance = temps × différence de vitesse
La vitesse du bateau en eau calme = la vitesse du bateau en eau calme + la vitesse du courant
La vitesse du bateau en eau amont = la vitesse du bateau en eau calme - la vitesse du courant
PPT sur l'application des équations linéaires à deux variables, partie 2 : analyse d'exemples
Exemple 1. Il y a deux voitures A et B à une certaine station. Si la voiture A démarre en premier, puis la voiture B démarre une heure plus tard, la voiture B rattrapera la voiture A 5 heures après le départ. Si la voiture A parcourt d'abord 30 km, puis la voiture B démarre, alors la voiture B rattrapera la voiture A. 4 heures après le départ, la distance parcourue par le véhicule B est 10 km plus longue que la distance parcourue par le véhicule A. Trouvez la vitesse des deux voitures.
Exemple 2. Un train express mesure 230 mètres de long et un train lent 220 mètres de long. Si les deux trains circulent dans la même direction, il faudra 90 secondes entre le moment où le train express rattrape le train lent et celui où il quitte le train lent. Il ne faut que 18 secondes pour quitter le train local lorsqu'ils se rencontrent. Quelles sont les vitesses du train express et du train local ?
Exemple 3. Deux personnes A et B s'entraînent à courir sur une piste circulaire d'une circonférence de 400 m. Si elles partent dans des directions opposées, elles se rencontreront toutes les 2,5 minutes ; si elles partent dans la même direction, elles se rencontreront toutes les 10 minutes. On suppose que la vitesse des deux personnes ne change pas et que A est plus rapide que B. Lentement, trouvez la vitesse de A et B.
Exemple 4. On sait que la distance entre les deux jetées A et B est de 240 km. Un navire de proue navigue entre les deux jetées A et B. Il lui faut 4 heures pour naviguer avec le courant et 6 heures pour naviguer à contre-courant. Trouvez la distance du navire en eau calme, la vitesse et la vélocité de l'écoulement de l'eau.
PPT sur l'application des équations linéaires à deux variables, troisième partie : problèmes d'ingénierie
Charge de travail = temps de travail × efficacité du travail
Heures de travail = charge de travail/efficacité du travail
Efficacité du travail = charge de travail/temps de travail,
Exemple 1. Un ouvrier avait initialement prévu de traiter un lot de pièces dans un délai limité. Si 10 pièces sont traitées par heure, le travail peut être terminé en 3 pièces ; si 11 pièces sont traitées par heure, le travail peut être terminé 1 heure avant la date prévue. Combien de pièces contient ce lot ? Combien d'heures faudra-t-il pour terminer le travail selon le plan initial ?
Solution : Supposons qu'il y ait x pièces dans ce lot et qu'il faille y heures pour les terminer selon le plan initial. Selon le sens de la question, nous obtenons
10y=x+3
11(y-1)=x
solution
X=77
Y=8
Réponse : Il y a 77 pièces dans ce lot, et il faudra 8 heures pour les terminer comme prévu.
PPT sur l'application des équations linéaires à deux variables, partie 4 : enjeux économiques des matières premières
Somme du principal et des intérêts = principal + intérêts
Intérêt = capital × taux d'intérêt annuel × nombre de périodes × impôt sur les intérêts
Impôt sur les revenus d'intérêts = montant des intérêts × 20�
Exemple 1 Li Ming a épargné 2 000 yuans et 1 000 yuans sous deux formes différentes. Au bout d'un an, il les a retirés tous les trois. Après déduction des intérêts et de l'impôt sur le revenu, il a pu obtenir un intérêt de 43,92 yuans. On sait que la somme des taux d'intérêt annuels de ces deux types d'épargne est de 3,24. Question : Quel est le taux d'intérêt annuel pour chaque type d'épargne ? (Remarque : impôt sur le revenu des intérêts payable par les citoyens = montant des intérêts × 20�)
Solution : Supposons que les taux d'intérêt annuels de ces deux épargnes soient respectivement x et y. D'après la question, on obtient
x+y=3. 24%
2000x80%+1000y80%=43.92
solution
x=2,25%
y=0,99%
Réponse : Les taux d’intérêt annuels pour ces deux types d’épargne sont respectivement de 2,25 % et de 0,09 %.
Mots clés : Téléchargement gratuit du logiciel de cours de mathématiques PPT Hebei Education Edition pour la septième année, volume 2, téléchargement PPT de l'application des équations linéaires à deux variables, format .PPT ;
Pour plus d'informations sur le cours PPT « Applications des systèmes d'équations linéaires à deux variables », veuillez cliquer sur la balise ppt « Applications des systèmes d'équations linéaires à deux variables ».
« Applications des systèmes d'équations quadratiques » PPT :
"Applications des équations linéaires à deux variables" PPT Première partie : Passez en revue le passé et apprenez le nouveau. Énumérez les étapes de base pour résoudre des problèmes verbaux avec des équations linéaires à une variable. Quelle est la clé pour résoudre des problèmes verbaux à l'aide d'équations ? Trouvez la relation d'équivalence. Le problème de deux chevaux portant une charge est une question largement répandue dans l'Inde ancienne.
文件信息
更新时间: 2024-10-29
本模板属于 数学课件 冀教版七年级数学下册 行业PPT模板
Cours PPT « Application des équations linéaires à deux variables »简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板是由文稿PPT提供的商务岗位竞聘通用PPT模板,简约校园招聘活动策划方案总结企事业单位招聘宣传演讲会PPT模板,下载源文件即可自行编辑修改源文件里的文字和图片,如果想要更多精美商务PPT模板,可以来道格办公。道格办公PPT,海量PPT模板幻灯片素材下载,我们只做精品的PPT模板!
Tips:如果打开模版觉得不合适您全部需求的话,可以检索相关内容「Cours PPT « Application des équations linéaires à deux variables »」即可。
Windows系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
Mac系统模版使用方法
直接解压文件后使用office 或者 wps即可使用
相关阅读
更详细的PPT相关的教程、字体的教程可以查看: 点击查看
注意事项
不要在微信、知乎、QQ、内置浏览器下载、请用手机浏览器下载! 如果您是手机用户,请移步电脑端下载!
1、文稿PPT,仅供学习参考,请在下载后24小时删除。
2、如果资源涉及你的合法权益,第一时间删除。
3、联系方式:service@daogebangong.com
Cours PPT « Application des équations linéaires à deux variables »由于使用限制,仅供个人学习与参考使用,如需商业使用请到相关官网授权。
(个人非商业用途是指以个人为单位、非商业产品运作的方式,运用该字体完成个人作品的展示,包括但不限于个人论文、简历等作品的设计)